Investigation of temperature and temporal stability of AlGaAsSb avalanche photodiodes
نویسندگان
چکیده
Since avalanche gain and breakdown voltage in most semiconductor materials change with temperature, instruments utilizing Avalanche Photodiodes (APDs) for their avalanche gains need to incorporate either temperature stabilization or voltage adjustment in the APD operation circuits. In this work we evaluated the temperature and temporal stability of avalanche gain in Al0.85Ga0.15As0.56Sb0.44, a wide bandgap semiconductor lattice-matched to InP substrates. We investigated the temperature and temporal stability of the gain and breakdown voltage at temperatures of 24 °C (room temperature) to 80 °C. The breakdown voltage varies linearly with temperature with a temperature coefficient of 1.60 mV/K. The avalanche gain reduces from 10 to 8.5, a reduction of 15%, when the temperature increases from 24 to 80°C. The temporal stability of gain was recorded when the APD was biased to achieve an avalanche gain of 10. Fluctuations are within ± 0.7% at 24°C, increasing to ± 1.33% at 80°C. The temperature and temporal stability of avalanche gain indicates the potential of using Al0.85Ga0.15As0.56Sb0.44 APDs grown on InP substrates to achieve high tolerance to temperature fluctuation. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. OCIS codes: (040.1345) Avalanche photodiodes (APDs); (060.2330) Fiber optics communications. References and links 1. S. M. Cho and H. H. Lee, “Impact ionization coefficient and energy distribution function in polar and nonpolar semiconductors,” J. Appl. Phys. 71(3), 1298–1305 (1992). 2. L. Tirino, M. Weber, K. F. Brennan, E. Bellotti, and M. Goano, “Temperature dependence of the impact ionization coefficients in GaAs, cubic SiC, and zinc-blende GaN,” J. Appl. Phys. 94(1), 423–430 (2003). 3. B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photonics Technol. Lett. 18(18), 1898–1900 (2006). 4. L. J. J. Tan, J. S. Ng, C. H. Tan, and J. P. R. David, “Avalanche Noise Characteristics in Submicron InP Diodes,” IEEE J. Quantum Electron. 44(4), 378–382 (2008). 5. L. J. J. Tan, D. S. G. Ong, J. S. Ng, C. H. Tan, S. K. Jones, Y. Qian, and J. P. R. David, “Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE J. Quantum Electron. 46(8), 1153–1157 (2010). 6. X. Meng, S. Xie, X. Zhou, N. Calandri, M. Sanzaro, A. Tosi, C. H. Tan, and J. S. Ng, “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons,” R. Soc. Open Sci. 3(3), 150584 (2016). 7. X. Zhou, C. H. Tan, S. Zhang, M. Moreno, S. Xie, S. Abdullah, and J. S. Ng, “Thin Al1-x Ga x As0.56Sb0.44 Diodes with Extremely Weak Temperature Dependence of Avalanche Breakdown,” R. Soc. Open Sci. 4(5), 170071 (2017). 8. J. Xie, S. Xie, R. C. Tozer, and C. H. Tan, “Excess Noise Characteristics of Thin AlAsSb APDs,” IEEE Trans. Electron Dev. 59(5), 1475–1479 (2012). 9. X. Zhou, L. L. G. Pinel, S. J. Dimler, S. Zhang, J. S. Ng, and C. H. Tan, “Thin Al1-xGaxAs0.56Sb0.44 Diodes With Low Excess Noise,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1 (2018). 10. M. Guden and J. Piprek, “Material parameters of quaternary III V semiconductors for multilayer mirrors at 1.55 μm wavelength,” Model. Simul. Mater. Sci. Eng. 4(4), 349–357 (1996). Vol. 25, No. 26 | 25 Dec 2017 | OPTICS EXPRESS 33610 #310092 https://doi.org/10.1364/OE.25.033610 Journal © 2017 Received 2 Nov 2017; revised 20 Dec 2017; accepted 20 Dec 2017; published 22 Dec 2017 11. T. Kagawa and G. Motosugi, “AlGaAsSb Avalanche Photodiodes for 1.0–1.3 μm Wavelength Region,” Jpn. J. Appl. Phys. 18(12), 2317–2318 (1979). 12. S. Miura, T. Mikawa, H. Kuwatsuka, N. Yasuoka, T. Tanahashi, and O. Wada, “AlGaSb avalanche photodiode exhibiting a very low excess noise factor,” Appl. Phys. Lett. 54(24), 2422–2423 (1989). 13. M. Grzesik, J. Donnelly, E. Duerr, M. Manfra, M. Diagne, R. Bailey, G. Turner, and W. Goodhue, “Impact ionization in AlxGa1-xAsySb1−y avalanche photodiodes,” Appl. Phys. Lett. 104(16), 162103 (2014). 14. M. E. Woodson, M. Ren, S. J. Maddox, Y. Chen, S. R. Bank, and J. C. Campbell, “Low-noise AlInAsSb avalanche photodiode,” Appl. Phys. Lett. 108(8), 081102 (2016). 15. L. L. G. Pinel, et al., “Improving Wet Etching of InGaAs/AlGaAsSb Avalanche Photodiode,” in 19th International Conference on Molecular Beam Epitaxy (2016). 16. M. H. Woods, W. C. Johnson, and M. A. Lampert, “Use of a Schottky barrier to measure impact ionization coefficients in semiconductors,” Solid-State Electron. 16(3), 381–394 (1973). 17. Hamamatsu Photonics Data sheets for S6045 and S5344, Si APDs. Hamamatsu Photonics Inc., March 2014. 18. F. Ma, G. Karve, X. Zheng, X. Sun, A. L. Holmes, Jr., and J. C. Campbell, “Low-temperature breakdown properties of AlxGa1-xAs avalanche photodiodes,” Appl. Phys. Lett. 81(10), 1908–1910 (2002). 19. J. S. L. Ong, J. S. Ng, A. B. Krysa, and J. P. R. David, “Temperature dependence of avalanche multiplication and breakdown voltage in Al0.52In0.48P,” J. Appl. Phys. 115(6), 064507 (2014). 20. D. J. Massey, J. P. R. David, and G. J. Rees, “Temperature dependence of impact ionization in submicrometer silicon devices,” IEEE Trans. Electron Dev. 53(9), 2328–2334 (2006). 21. S. Xie and C. H. Tan, “AlAsSb Avalanche Photodiodes With a Sub-mV/K Temperature Coefficient of Breakdown Voltage,” IEEE J. Quantum Electron. 47(11), 1391–1395 (2011). 22. D. S. G. Ong, J. S. Ng, Y. L. Goh, C. H. Tan, S. Zhang, and J. P. R. David, “InAlAs Avalanche Photodiode With Type-II Superlattice Absorber for Detection Beyond 2 μm,” IEEE Trans. Electron Dev. 58(2), 486–489 (2011).
منابع مشابه
AlxIn1-xAsySb1-y photodiodes with low avalanche breakdown temperature dependence.
We report AlxIn1-xAsySb1-y PIN and Separate Absorption, Charge and Multiplication (SACM) avalanche photodiodes (APDs) with high temperature stability. This work is based on measurements of avalanche breakdown voltage of these devices for temperatures between 223 K and 363 K. Breakdown voltage temperature coefficients are shown to be lower than those of APDs fabricated with other materials with ...
متن کاملMonte Carlo Simulation of Multiplication Factor in PIN In0.52Al0.48As Avalanche Photodiodes
In this paper, we calculate electron and hole impactionization coefficients in In0.52Al0.48As using a Monte Carlo modelwhich has two valleys and two bands for electrons and holesrespectively. Also, we calculate multiplication factor for electronand hole initiated multiplication regimes and breakdown voltagein In0.52Al0.48As PIN avalanche photodiodes. To validate themodel, we compare our simulat...
متن کاملInGaAs/AlGaAsSb avalanche photodiode with high gain-bandwidth product.
Increasing reliance on the Internet places greater and greater demands for high-speed optical communication systems. Increasing their data transfer rate allows more data to be transferred over existing links. With optical receivers being essential to all optical links, bandwidth performance of key components in receivers, such as avalanche photodiodes (APDs), must be improved. The APDs rely on ...
متن کاملInvestigation of Avalanche Photodiodes for EM Calorimeter at LHC
Silicon avalanche photodiodes (APD) have been studied extensively as a photodetector candidate for the electromagnetic calorimeter of the CMS detector at LHC. This report presents measurements of the latest generation APDs made by Hamamatsu and EG&G, with particular emphasis on spectral response, excess noise factor, response to charged particles and radiation hardness. The strategy for the fut...
متن کاملThin Al1−xGaxAs0.56Sb0.44 diodes with extremely weak temperature dependence of avalanche breakdown
When using avalanche photodiodes (APDs) in applications, temperature dependence of avalanche breakdown voltage is one of the performance parameters to be considered. Hence, novel materials developed for APDs require dedicated experimental studies. We have carried out such a study on thin Al1-x Ga x As0.56Sb0.44 p-i-n diode wafers (Ga composition from 0 to 0.15), plus measurements of avalanche g...
متن کامل